hiperon ne demek?

Hiperon bir grup atomaltı parçacığın ortak adıdır. Hiperonların spin sayıları tam sayı olmadığından fermion, güçlü etkileşimden etkilendikleri için hadron ve üç kuarktan oluştukları için de baryon sayılırlar. Bu yönüyle nötron ve proton gibi parçacıklarla aynı sınıfta yer alırlar. Ancak nötron ve protonun aksine yapılarındaki kuarklardan en az biri garip kuarktır. Ayrıca daha büyük kütleye sahiplerdir ve 10 <sup>−10</sup> saniyeden daha kısa ömürleri ile çok kararsız parçacıklardır.1 Hiperonlar 1950 li yıllarda keşfedildi. Daha sonra kuarkların keşfi sonucunda temel parçacık olmadıkları anlaşıldı.

Hiperonların listesi

<table> <caption>Hiperonlar</caption> <thead> <tr class="header"> <th><p>Adı</p></th> <th><p>Sembol</p></th> <th><p>Kuark yapısı</p></th> <th><p><a href="Kütle" title="wikilink">Kütle</a> (<a href="electron_volt" title="wikilink">MeV</a>/<em><a href="Işık_hızı" title="wikilink">c</a></em><sup>2</sup>)</p></th> <th><p><a href="Spin_(fizik)" title="wikilink">Spin</a></p></th> <th><p><a href="Elektrik_yük" title="wikilink">Elektrik yük</a></p></th> <th><p><a href="Gariplik" title="wikilink">Gariplik</a></p></th> <th><p>Ömür (saniye)</p></th> </tr> </thead> <tbody> <tr class="odd"> <td><p><a href="Lambda_baryonu" title="wikilink">Lambda</a> <a href="#fn1" class="footnote-ref" id="fnref1" role="doc-noteref"><sup>1</sup></a></p></td> <td></td> <td></td> <td><p>1 115.683(6)</p></td> <td><p><sup>+</sup></p></td> <td><p>0</p></td> <td><p>−1</p></td> <td><p><a href="#fn2" class="footnote-ref" id="fnref2" role="doc-noteref"><sup>2</sup></a></p></td> </tr> <tr class="even"> <td><p><a href="Sigma_baryonu" title="wikilink">Sigma</a> <a href="#fn3" class="footnote-ref" id="fnref3" role="doc-noteref"><sup>3</sup></a></p></td> <td></td> <td></td> <td><p>1 189.37(0.7)</p></td> <td><p><sup>+</sup></p></td> <td><p>+1</p></td> <td><p>−1</p></td> <td></td> </tr> <tr class="odd"> <td><p><a href="Sigma_baryonu" title="wikilink">Sigma</a> <a href="#fn4" class="footnote-ref" id="fnref4" role="doc-noteref"><sup>4</sup></a></p></td> <td></td> <td></td> <td><p>1 192.642(24)</p></td> <td><p><sup>+</sup></p></td> <td><p>0</p></td> <td><p>−1</p></td> <td></td> </tr> <tr class="even"> <td><p><a href="Sigma_baryonu" title="wikilink">Sigma</a> <a href="#fn5" class="footnote-ref" id="fnref5" role="doc-noteref"><sup>5</sup></a></p></td> <td></td> <td></td> <td><p>1 197.449(30)</p></td> <td><p><sup>+</sup></p></td> <td><p>−1</p></td> <td><p>−1</p></td> <td></td> </tr> <tr class="odd"> <td><p><a href="Sigma_baryonu" title="wikilink">Sigma</a> (rezonans) <a href="#fn6" class="footnote-ref" id="fnref6" role="doc-noteref"><sup>6</sup></a></p></td> <td></td> <td></td> <td><p>1 382.8(4)</p></td> <td><p><sup>+</sup></p></td> <td><p>+1</p></td> <td><p>−1</p></td> <td></td> </tr> <tr class="even"> <td><p><a href="Sigma_baryonu" title="wikilink">Sigma</a> (rezonans) <a href="#fn7" class="footnote-ref" id="fnref7" role="doc-noteref"><sup>7</sup></a></p></td> <td></td> <td></td> <td><p>1 383.7±1.0</p></td> <td><p><sup>+</sup></p></td> <td><p>0</p></td> <td><p>−1</p></td> <td></td> </tr> <tr class="odd"> <td><p><a href="Sigma_baryonu" title="wikilink">Sigma</a> (rezonans) <a href="#fn8" class="footnote-ref" id="fnref8" role="doc-noteref"><sup>8</sup></a></p></td> <td></td> <td></td> <td><p>1 387.2(5)</p></td> <td><p><sup>+</sup></p></td> <td><p>−1</p></td> <td><p>−1</p></td> <td></td> </tr> <tr class="even"> <td><p><a href="Ksi_baryonu" title="wikilink">Xi</a> <a href="#fn9" class="footnote-ref" id="fnref9" role="doc-noteref"><sup>9</sup></a></p></td> <td></td> <td></td> <td><p>1 314.83(20)</p></td> <td><p><sup>+</sup></p></td> <td><p>0</p></td> <td><p>−2</p></td> <td></td> </tr> <tr class="odd"> <td><p><a href="Ksi_baryonu" title="wikilink">Xi</a> <a href="#fn10" class="footnote-ref" id="fnref10" role="doc-noteref"><sup>10</sup></a></p></td> <td></td> <td></td> <td><p>1 321.31(13)</p></td> <td><p><sup>+</sup></p></td> <td><p>−1</p></td> <td><p>−2</p></td> <td></td> </tr> <tr class="even"> <td><p><a href="Ksi_baryonu" title="wikilink">Xi</a> (rezonans) <a href="#fn11" class="footnote-ref" id="fnref11" role="doc-noteref"><sup>11</sup></a></p></td> <td></td> <td></td> <td><p>1 531.80(32)</p></td> <td><p><sup>+</sup></p></td> <td><p>0</p></td> <td><p>−2</p></td> <td></td> </tr> <tr class="odd"> <td><p><a href="Ksi_baryonu" title="wikilink">Xi</a> (rezonans) <a href="#fn12" class="footnote-ref" id="fnref12" role="doc-noteref"><sup>12</sup></a></p></td> <td></td> <td></td> <td><p>1 535.0(6)</p></td> <td><p><sup>+</sup></p></td> <td><p>−1</p></td> <td><p>−2</p></td> <td></td> </tr> <tr class="even"> <td><p><a href="Omega_baryonu" title="wikilink">Omega</a><a href="#fn13" class="footnote-ref" id="fnref13" role="doc-noteref"><sup>13</sup></a></p></td> <td></td> <td></td> <td><p>1 672.45(29)</p></td> <td><p><sup>+</sup></p></td> <td><p>−1</p></td> <td><p>−3</p></td> <td></td> </tr> </tbody> </table> <section class="footnotes footnotes-end-of-document" role="doc-endnotes"> <hr /> <ol> <li id="fn1" role="doc-endnote"><a href="#fnref1" class="footnote-back" role="doc-backlink">↩︎</a></li> <li id="fn2" role="doc-endnote"><a href="#fnref2" class="footnote-back" role="doc-backlink">↩︎</a></li> <li id="fn3" role="doc-endnote"><a href="#fnref3" class="footnote-back" role="doc-backlink">↩︎</a></li> <li id="fn4" role="doc-endnote"><a href="#fnref4" class="footnote-back" role="doc-backlink">↩︎</a></li> <li id="fn5" role="doc-endnote"><a href="#fnref5" class="footnote-back" role="doc-backlink">↩︎</a></li> <li id="fn6" role="doc-endnote"><a href="#fnref6" class="footnote-back" role="doc-backlink">↩︎</a></li> <li id="fn7" role="doc-endnote"></li> <li id="fn8" role="doc-endnote"></li> <li id="fn9" role="doc-endnote"><a href="#fnref9" class="footnote-back" role="doc-backlink">↩︎</a></li> <li id="fn10" role="doc-endnote"><a href="#fnref10" class="footnote-back" role="doc-backlink">↩︎</a></li> <li id="fn11" role="doc-endnote"><a href="#fnref11" class="footnote-back" role="doc-backlink">↩︎</a></li> <li id="fn12" role="doc-endnote"></li> <li id="fn13" role="doc-endnote"><a href="#fnref13" class="footnote-back" role="doc-backlink">↩︎</a></li> </ol> </section>

Hiperonlar

Kütle birimi olarak verilen Mev/c<sup>2</sup> karşılığı 1.782661*10<sup>-30</sup> kg dir.

Bu tablodaki bütün hiperonların Baryon sayısı 1, Tılsım ve Altlık sayıları 0 dır.

<!-- -->

Kuark yapısı ile ilgili lejant

u:Yukarı kuark, d:Aşağı kuark, s:garip kuark

Kaynakça

Orijinal kaynak: hiperon. Creative Commons Atıf-BenzerPaylaşım Lisansı ile paylaşılmıştır.

Footnotes

  1. Hugh Young-Roger A. Freedman:University Physics ISBN 978-0321-50130-1 sf.1523

Kategoriler