kimya ne demek?

Kimya, maddenin yapısını, özelliklerini, birleşimlerini, etkileşimlerini, tepkimelerini araştıran ve uygulayan bilim dalıdır.12 Kimya bilmi daha kapsamlı bir ifadeyle maddelerin özellikleriyle, sınıflandırılmasıyla, atomlarla, atom teorisiyle, kimyasal bileşiklerle, kimyasal tepkimelerle, maddenin hâlleriyle, moleküller arası ve moleküler kuvvetlerle, kimyasal bağlarla, tepkime kinetiğiyle, kimyasal dengenin prensipleriyle vb konularla ilgilenir. Kimyanın en önemli dalları arasında analitik kimya, anorganik kimya, organik kimya, fizikokimya ve biyokimya sayılır.

Kimya sözcüğünün kökeni

"Kimya" sözcüğüyle simya sözcüğünün aynı kökten geldiği tahmin edilmektedir. On yedinci yüzyılda "kimya" ve "simya" sözcükleri aynı bilimsel disiplini tanımlamak için ayırt edilmeksizin kullanılmışlardır. Ancak 18'inci yüzyılda bu iki sözcük arasında bir ayrım gözetilmeye başlanmış, "simya" daha çok metalden altın yapmakla ilgili uğraşları tanımlamak için kullanılmıştır.3 "Simya" sözcüğünün Arapça "al kimya" () sözcüğünden türediği,4 bu Arapça sözcüğün de Grekçe'de "himya" (metal eritmek anlamına gelen χημεία ya da χημία) sözcüğünden türetildiği de iddia edilmektedir.5

Tarihi

ElementPolihedronYüzey SayısıÜçgen Sayısı
AteşDört yüzlü<small>4
HavaSekiz yüzlü (Octahedron)<small>8
SuYirmi yüzlü (Icosahedron)<small>20
ToprakKüp <small>6

Kimyanın tarihi "simya öncesi dönem", "simya dönemi", "geleneksel kimya ve "modern kimya" dönemleri olmak üzere 4 ana başlık altında toplanarak incelenir.

Simya öncesi

Kimyanın bilinen tarihi Antik Mısır döneminde başlamıştır. M.Ö. 2000'li yıllarda Mısırlılar'ın kimyasal yöntemler kullanarak kozmetik tozlar ürettikleri iddia edilmektedir.6 Kral Hammurabi döneminde (MÖ 1792-1750) Babiller altın, gümüş, cıva, kurşun, demir ve bakır gibi metalleri tanımlanmış ve bu metallere semboller verilmiştir.7 Erken Yunan felsefeciler (Sokrates öncesi düşünürler) doğal olayları doğaüstü olmayan nedenlerle açıklamaya çalışmışlar,8 bunun sonucunda da bu dönemde simya öncesi kimya biliminin temelleri atılmıştır. Miletli Tales (MÖ 624 – MÖ 546) maddenin presiplerini araştırmış ve suyun evrenin temel maddesi olduğunu öne sürmüştür.9 Bir diğer Miletli Anaksimandros (MÖ 610- MÖ 546) suyun karşıtı olan ateşin nasıl oluştuğunu sorgulamıştır.10 Empedokles (MÖ 490-430) evrenin 4 temel element ateş, hava, su ve topraktan oluştuğunu iddia etmiştir.11 Empedokles'in tanımına göre toprak katı maddeleri, su sıvı maddeleri ve metalleri, hava gazları ifade etmekteydi. Bununla beraber ateşi de bir süreçten çok sıvı, gaz ve katı gibi maddenin bir hali olarak tanımlamıştır. Demokritos'un hocası Leukippos evrenin iki çeşit elementten oluştuğunu (boşluk ve katı) ifade etmiş, boşluğun ve katılığın evrendeki tüm elementleri oluşturduğunu ifade etmiştir.12 Democritus (MÖ 460-370) Leukippos ile birlikte atomcu teoriyi geliştirmiştir.13 Maddelerin yapı taşı olarak daha küçük parçalara ayrılamayan atomlar Leucippus ve Democritus'un geliştirdiği bir felsefe sistemi olarak kabul edilmesine rağmen Platon bu atomculuk teorisine bölünemezlik prensibini eklemiştir. Plato evreni oluşturan 4 temel elementin geometrik katılardan oluştuğunu bu katıların da üçgen yüzeylerden oluştuğunu iddia etmiştir.14 Aristoteles (MÖ 384-323) elementlerin özellikleri düşüncesini geliştirmiştir. Farklı elementlerin farklı özellikleri olduğunu ve bunun çeşitli nicel değişkenlere bağlı olduğunu ifade etmiştir. Bu nicel özellikleri değiştirildiğinde bir elementin başka bir elemente dönüştürülebileceğini ve maddelerin değişim halinde olduğunu iddia etmiştir.15

Simya dönemi

Aristoteles'in fikirlerinden etkilenen simyacılar (yaklaşık M.Ö. 320-MS 300) yılları arasında Yunanca konuşulan Akdeniz kıyılarında, Mısır'da, İran'da Aristoteles ve diğer Yunan filozofların teorilerini pratiğe geçirmeye başlamışlardır.1617 Yine bu dönemde ilk defa simyacılar ucuz metallerden altın elde etmeyi mümkün kılması düşünülen felsefe taşını üretmeye çalışmışlardır.18

  1. yüzyıla gelindiğinde simya tüm Avrupa kıtasında yaygın bir hale gelmiş, örneğin dönemin önemli bilim adamlarından Raymundus Lullus19 İngiltere kralı tarafından İngiltere'ye basit metalden altın üretmesi için davet edilmiştir.20 13. yüzyılın başlarında dönemin ünlü simyacıları Roger Bacon21 (1214/1220–1292), Albertus Magnus22 ve Raymundus Lullus basit metalden altın üretme yöntemleri dışında simyanın diğer alanlarına yönelip, simyanın günümüz kimyasına yaklaşmasına öncü olmuşlardır.23

14. yüzyılda Katolik Kilisesi simya karşıtı taraf olmuş ve 1317 yılında Papa John XXII simyacılığı yasaklamıştır.24

17. yüzyıla gelindiğinde simya göreceli olarak az da olsa hala varlığını sürdürmekteydi. 17. yüzyılın etkin bilim adamlarından Robert Boyle 1661 yılında döneminde büyük yankı uyandıran eseri The Sceptical Chymist'i yayımlamıştır.25 Aristoteles'in 4 element teorisini ret eden bu kitap aynı zamanda simyanın döneminin de sona erdiğini işaret etmekteydi.26
Simya döneminde simyacıların araştırmaları ve deneyleri vasıtasıyla birçok laboratuvar tekniği geliştirilmiş ve çeşitli bileşik ve elementler keşif edilmiştir.27

Geleneksel kimya

Geleneksel kimya dönemi, 17'inci yüzyılın sonlarından başlayarak 19'uncu yüzyılın başlarına kadar sürmüştür. Alman bilim insanı Johann Joachim Becher, 17. yüzyıl ortalarında yanma ile ilgili Phlogiston teorisini geliştirdi. Bu teoriye göre; her yanıcı madde, "phlogiston" adı verilen kokusuz, renksiz, tatsız ve ağırlıksız bir içeriğe sahipti ve bu içerik yanma gerçekleştiğinde yanıcı madde tarafından ortama salınmaktaydı.28

Bu teori daha sonra Georg Ernst Stahl tarafından daha popüler bir hale getirilmiş, 18. yüzyılın büyük bir kısmında genel kabul görmeye devam etmiştir.29 1785 ile 1787 yılları arasında Fransız fizikçi Coulomb günümüzde "Coulomb yasası" olarak adlandırılan benzer yüklü maddelerin birbirini ittiği, karşıt yüklülerin de birbirini çektiği ve bu çekim ya da itim kuvvetinin hesaplanması için gerekli denklemi de içeren kanunu bulmuştu.30 Phlogiston teorisi, 18. yüzyılın sonlarına gelindiğinde Lavoisier tarafından çürütüldü. Daha önceden Phlogiston teorisine göre de-phlogiston maddesi olarak adlandırılan maddenin oksijen olduğu keşfedildi.31 1803 yılında İngiliz bilim insanı John Dalton, atom teorisini ortaya attı. Bu teoriye göre; farklı elementlerin atomları, farklı ağırlıklara sahiptir. Bu teorinin bazı ilkeleri;

  • Bütün maddeler atomlardan meydana gelmektedir.
  • Atomlar daha küçük parçalara ayrılamazlar.
  • Aynı elementin bütün atomları birbirinin aynısıdır.
  • Farklı elementler farklı atomlara sahiptir.
  • Atomların yeniden düzenlenmesi sonucu kimyasal tepkimeler meydana gelir.
  • Bileşikler elementlerden meydana gelirler.

şeklinde özetlenebilir.32 John Dalton'un teorisiyle modern kimyanın temelleri de atılmış oldu.33

Modern kimya

19. yüzyıldan itibaren gelen sürece "modern kimya dönemi" adı verilir. Heinrich Geißler (1814-1879) 1854 yılında suyun en yüksek yoğunluğa 3.8 °C ulaştığını kendi icat ettiği bir mekanizmayla göstermiştir (daha sonra bu sıcaklığın 3.98 °C olduğu bulunmuştur).34 Daha sonra Geisslerin icat ettiği vakum tüpüyle William Crookes atom teorisinde ilerlemeler kaydetmiş ve katot ışınını keşfetmiştir.35

Eugene Goldstein (1850-1930)'ın çalışmaları protonun varlığını ispatlamıştır. J. J. Thomson (1856 – 1940) kendi atom modelini geliştirmiş ve 1906 yılında Nobel fizik ödülünü kazanmıştır.36 Mendeleyev periyodik tabloyu 1869 yılında Kimyanın Prensipleri adlı eserinde yayımlamıştır. Bu periodik tabloda bilinen 63 elementi atom ağırlıklarına ve benzer özelliklerine göre sıralamıştır.37 Marie Curie (1867 – 1934) radyoaktiviteyi ve sonrasında Polonyum ve Radyum'u keşetmiştir.38 1911 yılında Nobel kimya ödülünü kazanmıştır.39 Ernest Rutherford 3 çeşit radyoaktifliği alfa parçacığı (+), beta parçacığı (-) ve gama ışınını keşfetmiştir.404142 Bu gelişmelerin sonrasında ve öncesinde daha birçok bilim insanının katkısıyla kimya bilimi günümüze ulaşmıştır. 2011 yılı Birleşmiş Milletler tarafından uluslararası kimya yılı ilan edilmiştir.43

Temel kalcumar ve konular

Asitler ve bazlar

TanımAsit Baz Tepkimeleri
Bronsted-Lowry tanımına göre<small>
Lewis tanımına göre<small>
Asit-Baz Temel Tanımlar

Antik Yunanistan ve Antik Mısır'da belli başlı asitler ve bazlar halihazırda sınıflandırılmışlardı.44 Yunanlar ekşimsi tat veren sirke gibi maddeleri ὀξύς (ekşi) olarak adlandırmışlar45, daha sonra bu sözcük Latinceye acere olarak geçmiş46 ve Avrupa dillerindeki anlamı da latinceden türeyerek bu dillere geçmiştir. Oksijen elementinin adı da Antoine Lavoisier'in oksijeni (asid üreten anlamında) hatalı tanımlamasından kaynaklanmaktadır.47 Asit ve bazların farklı tanımları mevcuttur.
Arhenius’un tanımına göre;

Asit, suda çözüldüğünde çözeltiye H<sup>+</sup> bırakan maddelerdir.

Baz ise, OH<sup>-</sup> bırakan maddelerdir.48

Bronsted-Lowry tanımına göre;

Asit, proton (H<sup>+</sup>) bırakan maddelere denir.

Baz, proton kabul eden maddelerdir.49

Lewis Teorisine göre;

Asit, H<sup>+</sup> iyonu gibi, çözeltiden elektron eksilten maddelerdir.50

Baz ise, elektron veren maddelerdir. Diğer tanımlardan farklı olarak sadece elektron alışverişi üzerine kurulmuş bir tanımlamadır.51

Asit-baz tepkimeleri

Asit ve baz etkileşim halinde bırakıldıklarında, tuz üreterek bir diğerini nötrleştirme eğilimi gösterirler. HCl ve NaOH'ın tepkimesi NaCl bileşiği (tuz) ve su üretir.52

HCl + NaOH → NaCl + H<sub>2</sub>O

Atomun yapısı

1803-1808 yılları arasında öğretmenlik mesleğini yerine getirmekte olan John Dalton kimyanın iki temel yasası olan kütlenin korunumu ve sabit oranlar'ı kullanarak temel atom teorisini tanımlamıştır. Dalton'un atom teorisi üç ana önermeyi içermekteydi.53 Bunlar;

:# Her kimyasal element küçük, bölünemeyen atom olarak adlandırılan parçacıklardan oluşmaktadır.

:# Aynı elementin atomları birbirine ağırlık ve özellikleri bakımından benzerdirler, fakat farklı elementlerin atomları birbirinden farklıdırlar.

:# Herhangi bir bileşik oluşurken, farklı elementler basit bir sayısal oranda birleşirler. Örneğin A atomu B atomuyla birleşip AB bileşiğini oluşturuyorsa, 2AB bileşiğini oluşturmak için 2A 2B'ile tepkimeye girmek zorundadır.54

Dalton'un atom teorisini tanımlamasından yaklaşık yüzyıl sonra atomun temel parçacıkları keşif edilmiştir. 1897 yılında elektron55, 1909 yilinda proton56 ve 1932 yilinda nötron57 keşif edilmiştir.

Dosya:Plum pudding atom.svg| Dosya:Bohr atom model notext.svg| Dosya:Rutherford atom.svg|

Atom'un temel parçacıkları keşif edildikten sonraki dönemde birçok isim atom teorisine kayda değer katkılar sağlamıştır. Bu isimlerden bazıları Einstein, De Broglie, Schrodinger ve Heisenberg'dir.
Kuantum teorisi elektronların parçacık olmakla birlikte, aynı zamanda dalga özelliklerine sahip olduğunu göstermiştir. Modern atom teorisine göre atom etrafı olasılık bulutlarıyla (orbital) çevrili atom çekirdeğinden oluşmaktadır. Bu olasılık bulutları da elektronların en olası bulundukları yerleri ifade etmektedir. Dalga denklemleri kullanılarak bu orbitallerin şekli ve büyüklüğü hesaplanabilmektedir.58

<table> <thead> <tr class="header"> <th><p>Parçacık</p></th> <th><p>Kütle</p></th> <th><p>Yük</p></th> <th><p>Anti Parçacık</p></th> <th><p>Sembol</p></th> <th><p>Keşif</p></th> <th><p>Teori</p></th> </tr> </thead> <tbody> <tr class="odd"> <td><p><a href="Nötron" title="wikilink">Nötron</a><small></p></td> <td><p><a href="#fn1" class="footnote-ref" id="fnref1" role="doc-noteref"><sup>1</sup></a></p></td> <td><p>0</p></td> <td><p><a href="Antinötron" title="wikilink">Antinötron</a></p></td> <td><p>n<sup>0<sup></p></td> <td><p><a href="James_Chadwick" title="wikilink">James Chadwick</a> (1932)<a href="#fn2" class="footnote-ref" id="fnref2" role="doc-noteref"><sup>2</sup></a></p></td> <td><p><a href="Ernest_Rutherford" title="wikilink">Ernest Rutherford</a> (1920)<a href="#fn3" class="footnote-ref" id="fnref3" role="doc-noteref"><sup>3</sup></a></p></td> </tr> <tr class="even"> <td><p><a href="Proton" title="wikilink">Proton</a><small></p></td> <td><p><a href="#fn4" class="footnote-ref" id="fnref4" role="doc-noteref"><sup>4</sup></a></p></td> <td><p> </p></td> <td><p><a href="Antiproton" title="wikilink">Antiproton</a></p></td> <td><p>p<sup>+<sup></p></td> <td><p><a href="Ernest_Rutherford" title="wikilink">Ernest Rutherford</a> (1917–1919, isimlendirilmesi; 1920)</p></td> <td><p><a href="William_Prout" title="wikilink">William Prout</a> (1815)</p></td> </tr> <tr class="odd"> <td><p><a href="Elektron" title="wikilink">Elektron</a><small></p></td> <td><p><a href="#fn5" class="footnote-ref" id="fnref5" role="doc-noteref"><sup>5</sup></a></p></td> <td><p> </p></td> <td><p><a href="Pozitron" title="wikilink">Pozitron</a></p></td> <td><p>e</p></td> <td><p><a href="J._J._Thomson" title="wikilink">J. J. Thomson</a> (1897)</p></td> <td><p><a href="G._Johnstone_Stoney" title="wikilink">G. Johnstone Stoney</a> (1874)</p></td> </tr> <tr class="even"> <td><p><strong><em><a href="Atom_çekirdeği" title="wikilink">Atomun temel parçacıkları</a></em></strong></p></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> </tbody> </table> <section class="footnotes footnotes-end-of-document" role="doc-endnotes"> <hr /> <ol> <li id="fn1" role="doc-endnote">Mohr, P.J.; Taylor, B.N. and Newell, D.B. (2011), <a href="http://physics.nist.gov/constants">"The 2010 CODATA Recommended Values of the Fundamental Physical Constants"</a> <a href="#fnref1" class="footnote-back" role="doc-backlink">↩︎</a></li> <li id="fn2" role="doc-endnote"><a href="http://nobelprize.org/nobel_prizes/physics/laureates/1935/">1935 Nobel Prize in Physics</a> . Nobelprize.org.<a href="#fnref2" class="footnote-back" role="doc-backlink">↩︎</a></li> <li id="fn3" role="doc-endnote"></li> <li id="fn4" role="doc-endnote"></li> <li id="fn5" role="doc-endnote"></li> </ol> </section>

Moleküllerin yapısı

Molekül birbirine bağlı bir grup atomun oluşturduğu kimyasal bileşiklerin en küçük temel yapısına verilen addır.59 Diğer bir ifadeyle bir molekül bir bileşiği oluşturan atomların eşit oranlarda bulunduğu en küçük birimdir. Moleküller yapılarında birden fazla atom içerirler. Bir molekül aynı iki atomun bağlanması sonucu ya da farkı sayılarda farklı atomların bağlanması sonucu da oluşabilirler. Bir su molekülü 3 atomdan oluşur; iki hidrojen ve bir oksijen. Bir hidrojen peroksit molekülü iki hidrojen ve iki oksijen atomundan oluşur. Diğer taraftan bir kan proteini olan gamma globulin 19996 sayıda atomdan oluşmakla birlikte sadece 4 çeşit farklı atom içerir; hidrojen, karbon, oksijen ve nitrojen.60 Molekülleri oluşturan kimyasal bağlara Moleküler bağlar denir. Bunlar kovalent, iyonik ve metalik bağlardır.61

Moleküler bağlar

<gallery caption="" 'moleküler="" bağlar="" '''="" align="center"> Dosya:CarbonCarbon4Point.gif| Dosya:Ionic bonding animation.gif| Dosya:Metallic bond Cu.svg|

</gallery>

Bir molekülün atomları arasında oluşan bağlardır. Moleküller arası bağlardan daha kuvvetlidirler.62 Bir su molekülünün atomlarını bir arada tutan bağ moleküler bağlara örnektir. Öte yandan su moleküllerini buz halindeyken bir arada tutan bağlar ise moleküller arası bağlara örnektir. Moleküler bağlar kovalent, iyonik ve metalik bağlardır.

Moleküller arası kuvvetler

Moleküller arası kuvvetler, bir bileşiğin molekülleri arasında bulunan çekim kuvvetleridir. Bu kuvvetler bir bileşiğin katı, sıvı ya da gaz halinde bulunmasında, kaynama ve erime noktalarının değerinde ve çözünürlüğünde önemli rol oynar.63 Moleküller arası kuvvetler Van der Waals kuvvetleri ve hidrojen bağıdır.64

Bileşikler

Su, amonyak, karbonmonoksit ve karbondioksit gibi aşina olduğumuz maddeler aslında kimyasal bileşiktir. Bunların yanında daha az aşina olduğumuz sakkaroz (çay şekeri), asetilsalisilik asit (aspirin) ve askorbik asit (C vitamini) de kimyasal bileşiklere örnek teşkil etmektedirler. Bütün bu bileşiklerin ortak özelliği her birinin iki ya da daha fazla elementten oluşuyor olmalarıdır. Öyleyse, kimyasal bileşik iki ya da daha fazla elementin atomlarının oluşturduğu aynı özelliklere sahip moleküllerin oluşturduğu maddelerdir.65 Kimyasal bileşikler, moleküler bileşik ve iyonik bileşik olmak üzere ikiye ayrılır.

Bileşik çeşitleri

TanımKimyasal Formül
Empirik Formül<small>CH<sub>2</sub>O
Moleküler Formül<small>C<sub>2</sub>H<sub>4</sub>O<sub>2</sub>
Yapısal Formül<small>
Asetik Asit

;

1. Moleküler bileşik moleküllerden oluşmaktadır. Bu moleküller genel olarak metal olmayan birbirine kovalent bağla bağlı atomlardan oluşmaktadırlar. Moleküler Bileşikler kimyasal formüllerle ifade edilirler. Bu formüller de bileşiğin içerdiği elementleri ve bu elementlerin birbirine orantılı sayılarını vermektedir. Formül çeşitleri;

Empirik formül molekül hakkında çok fazla bilgi vermemekle birlikte sadece elementlerin orantısal sayılarını vermektedir. Örneğin, CH<sub>2</sub>O empirik formülü hem C<sub>2</sub>H<sub>4</sub>O<sub>2</sub> hem de C<sub>6</sub>H<sub>12</sub>O<sub>6</sub> molekülleri için aynıdır.

Moleküler formül molekülü oluşturan elementlerin sayılarını vermektedir. C<sub>6</sub>H<sub>12</sub>O<sub>6</sub> moleküler formüle örnektir.

Yapısal formül ise molekülün içerisindeki bağlarıda göstermektedir.

2. İyonik bileşik pozitif ve negatif iyonların elektrostatik çekimle birleşimi sonucu oluşan bileşiklerdir.

Çözeltiler

Çözelti, bir ya da daha fazla maddenin (solute) moleküler düzeyde başka bir maddenin (solvent) içine karışıp, oluşturduğu homojen karışımdır.66 Bazı yaygın çözeltilere hava (0<sub>2</sub>, N<sub>2</sub> ve diğer bazı gazlar), doğalgaz (CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub> ve diğer birçok madde), deniz suyu (su, tuz vs.), sirke (su ve asetik asit) ve pirinç (kalay, kurşun gibi çözeltiler örnek olarak verilebilir.

Çözünürlük

Çözünürlük, bir maddenin bir solvent içerinde çözünme miktarını ifade etmek için kullanılır. Genellikle çözünen maddenin miktarının (solute) solventin hacmine bölünmesiyle elde edilir.67 Çözünürlüğü etkiyen faktörler;

olarak sıralanabilinir.68

Elektrokimya

Elektrokimya elektrik ve kimyasal değişimler arasındaki ilişkileri inceler. Kendiliğinden gelişen birçok kimyasal tepkime sonucunda elektrik akımı oluşmaktadır. Öte yandan elektrik akımı kendiliğinden gelişmeyen birçok tepkimenin gerçekleştirilmesinde kullanılmaktadır. Elektroliz süreciyle elektrik enerjisi kimyasal enerjiye dönüştürülebilmektedir.69

Kimyasal bağlar

Kimyasal bağ farklı atomların elektronlarının etkileşimi sonucu oluşur ve atomları bir arada tutar. Kimyasal bağ atomlar arası elektron alışverişi sonucu oluşuyorsa iyonik bağ, eğer ortak paylaşım sonucu oluşuyorsa kovalent bağ olarak adlandırılır. Elektronların metal atomları arasında paylaşımı sonucu oluşuyorsa da buna [Metalik bağ|metalik bağ] denir.70 https://tr.wikipedia.org/w/∘index⋅.php?title=Kimya&action=edit&section=19

Kinetik

Kimyasal kinetik, kimyasal tepkimeleri tepkime hızı, değişkenlerin tepkimeye etkileri, atomların yeniden dizilişi ve ara ürünlerin oluşumu gibi açılardan ele alır.71

Stokiyometri

Stokiyometri, kimyasal bir tepkimede bulunan reaktanların ve ürünlerin miktarlarının bir birleriyle olan sayısal ilişkilerini inceler. Dengedeki bir kimyasal tepkime ifadesinde, katsayılar kaç mol reaktanın bir diğer bir reaktanla tepkimeye girmek için gerekli olduğunu ve bu tepkimeden kaç mol ürün elde edileceğini ortaya koymada kullanılan metottur.72 Dengede olan bir tepkimede reaktanların ve ürünlerin miktarları arasında bölen ve bölünen kısımlarında pozitif tam sayılar içeren bir orantı oluştumaktadır. Örneğin metan'ın oksijen'le tepkimesinde, 1 molekül karbondioksit ve 2 molekül su oluşması için 1 molekül Metan 2 molekül oksijen ile tepkimeye girmelidir.73

+ 2 → 1 + 2

Termodinamik

Termodinamik, enerji, ısı, entropi ve ekserji gibi fiziksel kavramlarla ilgilenen bilim dalı. Termodinamik her ne kadar sistemlerin madde ve/veya enerji alış-verişiyle ilgilense de, bu işlemlerin hızıyla ilgilenmez. Bundan dolayı aslında termodinamik denilirken, denge termodinamiği kastedilir. Zamana bağlı termodinamik olaylarla, denge halinde olmayan termodinamik ilgilenir.

Kimyanın temel kanunları

Kimyanın ana bilim dalları

Kimya'nın ana alt dalları şöyle sıralanabilinir74 ;

Kaynakça

Genel

  • Ralph H. Petrucci ... [et (2010) al.],. General chemistry : principles and modern applications (10th ed. bas.). Toronto: Pearson Prentice Hall. ISBN 9780132064521

Özel

Orijinal kaynak: kimya. Creative Commons Atıf-BenzerPaylaşım Lisansı ile paylaşılmıştır.

Footnotes

Kategoriler